Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 111(2): e16276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297448

RESUMEN

PREMISE: Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS: We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS: We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS: Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.


Asunto(s)
Evolución Biológica , Cromosomas Sexuales , Filogenia , África , África del Norte
2.
Front Plant Sci ; 14: 1237749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711293

RESUMEN

Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genus Sarracenia L. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis of Sarracenia estimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring in Sarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembled de-novo from sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history of Sarracenia.

3.
Ann Bot ; 132(4): 727-737, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37191440

RESUMEN

Crassulacean acid metabolism - or CAM photosynthesis - was described in the early to mid-20th century, and our understanding of this metabolic pathway was later expanded upon through detailed biochemical analyses of carbon balance. Soon after, scientists began to study the ecophysiological implications of CAM, and a large part of this early work was conducted in the genus Agave, in the subfamily Agavoideae of the family Asparagaceae. Today, the Agavoideae continues to be important for the study of CAM photosynthesis, from the ecophysiology of CAM species, to the evolution of the CAM phenotype and to the genomics underlying CAM traits. Here we review past and current work on CAM in the Agavoideae, in particular highlighting the work of Park Nobel in Agave, and focusing on the powerful comparative system the Agavoideae has become for studying the origins of CAM. We also highlight new genomics research and the potential for studying intraspecific variation within species of the Agavoideae, particularly species in the genus Yucca. The Agavoideae has served as an important model clade for CAM research for decades, and undoubtedly will continue to help push our understanding of CAM biology and evolution in the future.


Asunto(s)
Asparagaceae , Filogenia , Asparagaceae/genética , Asparagaceae/metabolismo , Fenotipo , Carbono/metabolismo , Genómica , Fotosíntesis
4.
Science ; 379(6638): 1252-1264, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36952412

RESUMEN

The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.


Asunto(s)
Adyuvantes de Vacunas , Vías Biosintéticas , Quillaja , Saponinas , Adyuvantes de Vacunas/biosíntesis , Adyuvantes de Vacunas/química , Adyuvantes de Vacunas/genética , Quillaja/enzimología , Quillaja/genética , Saponinas/biosíntesis , Saponinas/química , Saponinas/genética , Análisis de Secuencia de ADN , Genoma de Planta , Vías Biosintéticas/genética , /metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Science ; 379(6630): 361-368, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701471

RESUMEN

Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature limonoid furan. These results enable access to valuable limonoids and provide a template for discovery and reconstitution of triterpene biosynthetic pathways in plants that require multiple skeletal rearrangements and oxidations.


Asunto(s)
Citrus , Genes de Plantas , Limoninas , Melia azedarach , Citrus/enzimología , Citrus/genética , Limoninas/metabolismo , Melia azedarach/enzimología , Melia azedarach/genética , Vías Biosintéticas/genética
6.
Genome Biol Evol ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36582124

RESUMEN

Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.


Asunto(s)
Genoma de Plastidios , Orchidaceae , Humanos , Anciano , Filogenia , Genes de Plantas , Proteínas de Plantas/genética , Orchidaceae/genética
7.
Cell Genom ; 2(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35720975

RESUMEN

Sex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome. Furthermore, most computational analysis tools are unable to efficiently investigate their unique biology relative to autosomes. We discuss a diversity of sex chromosome systems and consider the challenges of representing sex chromosome pairs in genome assemblies. By addressing these issues now as technologies for full phasing of chromosomal assemblies are maturing, we can collectively ensure that future genome analysis toolkits can be broadly applied to all eukaryotes with diverse types of sex chromosome systems. Here we provide best practice guidelines for presenting a genome assembly that contains sex chromosomes. These guidelines can also be applied to other non-recombining genomic regions, such as S-loci in plants and mating-type loci in fungi and algae.

8.
New Phytol ; 235(5): 2111-2126, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35596719

RESUMEN

Crassulacean acid metabolism (CAM) photosynthesis has evolved repeatedly across the plant tree of life, however our understanding of the genetic convergence across independent origins remains hampered by the lack of comparative studies. Here, we explore gene expression profiles in eight species from the Agavoideae (Asparagaceae) encompassing three independent origins of CAM. Using comparative physiology and transcriptomics, we examined the variable modes of CAM in this subfamily and the changes in gene expression across time of day and between well watered and drought-stressed treatments. We further assessed gene expression and the molecular evolution of genes encoding phosphoenolpyruvate carboxylase (PPC), an enzyme required for primary carbon fixation in CAM. Most time-of-day expression profiles are largely conserved across all eight species and suggest that large perturbations to the central clock are not required for CAM evolution. By contrast, transcriptional response to drought is highly lineage specific. Yucca and Beschorneria have CAM-like expression of PPC2, a copy of PPC that has never been shown to be recruited for CAM in angiosperms. Together the physiological and transcriptomic comparison of closely related C3 and CAM species reveals similar gene expression profiles, with the notable exception of differential recruitment of carboxylase enzymes for CAM function.


Asunto(s)
Asparagaceae , Asparagaceae/genética , Asparagaceae/metabolismo , Metabolismo Ácido de las Crasuláceas , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Transcriptoma/genética
9.
Ann Bot ; 127(4): 437-449, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32166326

RESUMEN

BACKGROUND AND AIMS: Crassulacean acid metabolism (CAM) is often considered to be a complex trait, requiring orchestration of leaf anatomy and physiology for optimal performance. However, the observation of trait correlations is based largely on comparisons between C3 and strong CAM species, resulting in a lack of understanding as to how such traits evolve and the level of intraspecific variability for CAM and associated traits. METHODS: To understand intraspecific variation for traits underlying CAM and how these traits might assemble over evolutionary time, we conducted detailed time course physiological screens and measured aspects of leaf anatomy in 24 genotypes of a C3+CAM hybrid species, Yucca gloriosa (Asparagaceae). Comparisons were made to Y. gloriosa's progenitor species, Y. filamentosa (C3) and Y. aloifolia (CAM). KEY RESULTS: Based on gas exchange and measurement of leaf acids, Y. gloriosa appears to use both C3 and CAM, and varies across genotypes in the degree to which CAM can be upregulated under drought stress. While correlations between leaf anatomy and physiology exist when testing across all three Yucca species, such correlations break down at the species level in Y. gloriosa. CONCLUSIONS: The variation in CAM upregulation in Y. gloriosa is a result of its relatively recent hybrid origin. The lack of trait correlations between anatomy and physiology within Y. gloriosa indicate that the evolution of CAM, at least initially, can proceed through a wide combination of anatomical traits, and more favourable combinations are eventually selected for in strong CAM plants.


Asunto(s)
Yucca , Genotipo , Fenotipo , Fotosíntesis , Hojas de la Planta
10.
Plant Cell ; 32(6): 1790-1796, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220850

RESUMEN

The origin and early evolution of sex chromosomes have been hypothesized to involve the linkage of factors with antagonistic effects on male and female function. Garden asparagus (Asparagus officinalis) is an ideal species to investigate this hypothesis, as the X and Y chromosomes are cytologically homomorphic and evolved from an ancestral autosome pair in association with a shift from hermaphroditism to dioecy. Mutagenesis screens paired with single-molecule fluorescence in situ hybridization directly implicate Y-specific genes that respectively suppress female (pistil) development and are necessary for male (anther) development. Comparison of contiguous X and Y chromosome assemblies shows that hemizygosity underlies the loss of recombination between the genes suppressing female organogenesis (SUPPRESSOR OF FEMALE FUNCTION) and promoting male function (TAPETAL DEVELOPMENT AND FUNCTION1 [aspTDF1]). We also experimentally demonstrate the function of aspTDF1. These findings provide direct evidence that sex chromosomes can function through linkage of two sex determination genes.


Asunto(s)
Asparagus/genética , Cromosomas de las Plantas/genética , Proteínas de Plantas/metabolismo , Hemicigoto , Mutagénesis , Proteínas de Plantas/genética
11.
Front Plant Sci ; 11: 573767, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519836

RESUMEN

Hybridization in plants results in phenotypic and genotypic perturbations that can have dramatic effects on hybrid physiology, ecology, and overall fitness. Hybridization can also perturb epigenetic control of transposable elements, resulting in their proliferation. Understanding the mechanisms that maintain genomic integrity after hybridization is often confounded by changes in ploidy that occur in hybrid plant species. Homoploid hybrid species, which have no change in chromosome number relative to their parents, offer an opportunity to study the genomic consequences of hybridization in the absence of change in ploidy. Yucca gloriosa (Asparagaceae) is a young homoploid hybrid species, resulting from a cross between Yucca aloifolia and Yucca filamentosa. Previous analyses of ∼11 kb of the chloroplast genome and nuclear-encoded microsatellites implicated a single Y. aloifolia genotype as the maternal parent of Y. gloriosa. Using whole genome resequencing, we assembled chloroplast genomes from 41 accessions of all three species to re-assess the hybrid origins of Y. gloriosa. We further used re-sequencing data to annotate transposon abundance in the three species and mRNA-seq to analyze transcription of transposons. The chloroplast phylogeny and haplotype analysis suggest multiple hybridization events contributing to the origin of Y. gloriosa, with both parental species acting as the maternal donor. Transposon abundance at the superfamily level was significantly different between the three species; the hybrid was frequently intermediate to the parental species in TE superfamily abundance or appeared more similar to one or the other parent. In only one case-Copia LTR transposons-did Y. gloriosa have a significantly higher abundance relative to either parent. Expression patterns across the three species showed little increased transcriptional activity of transposons, suggesting that either no transposon release occurred in Y. gloriosa upon hybridization, or that any transposons that were activated via hybridization were rapidly silenced. The identification and quantification of transposon families paired with expression evidence paves the way for additional work seeking to link epigenetics with the important trait variation seen in this homoploid hybrid system.

12.
Annu Rev Plant Biol ; 71: 741-765, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31851546

RESUMEN

The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.


Asunto(s)
Transcriptoma , Viridiplantae , Evolución Molecular , Redes Reguladoras de Genes , Filogenia , Viridiplantae/genética
13.
Plant J ; 100(1): 199-211, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31155775

RESUMEN

Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.


Asunto(s)
Arabidopsis/genética , Mutagénesis Insercional/métodos , Mutación , Fenómica/métodos , ADN Bacteriano/genética , Ambiente , Variación Genética , Genómica/métodos , Fenotipo , Plantas Modificadas Genéticamente
14.
J Exp Bot ; 70(22): 6597-6609, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30870557

RESUMEN

Crassulacean acid metabolism (CAM) is a carbon-concentrating mechanism that has evolved numerous times across flowering plants and is thought to be an adaptation to water-limited environments. CAM has been investigated from physiological and biochemical perspectives, but little is known about how plants evolve from C3 to CAM at the genetic or metabolic level. Here we take a comparative approach in analyzing time-course data of C3, CAM, and C3+CAM intermediate Yucca (Asparagaceae) species. RNA samples were collected over a 24 h period from both well-watered and drought-stressed plants, and were clustered based on time-dependent expression patterns. Metabolomic data reveal differences in carbohydrate metabolism and antioxidant response between the CAM and C3 species, suggesting that changes to metabolic pathways are important for CAM evolution and function. However, all three species share expression profiles of canonical CAM pathway genes, regardless of photosynthetic pathway. Despite differences in transcript and metabolite profiles between the C3 and CAM species, shared time-structured expression of CAM genes in both CAM and C3Yucca species suggests that ancestral expression patterns required for CAM may have pre-dated its origin in Yucca.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Genes de Plantas , Yucca/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Metabolómica , Fenotipo , Fotosíntesis/genética
15.
Nat Commun ; 9(1): 4580, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389915

RESUMEN

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


Asunto(s)
Diploidia , Genoma de Planta , Ipomoea batatas/genética , Fitomejoramiento , Secuencia de Bases , Carotenoides/metabolismo , Ecotipo , Variación Genética , Genómica , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética
16.
Front Plant Sci ; 9: 2000, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30745906

RESUMEN

Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C3 photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited environments. CAM plants fix CO2 mostly at night, when transpiration rates are low. All of the CAM pathway genes exist in ancestral C3 species, but the timing and magnitude of expression are greatly altered between C3 and CAM species. Understanding these regulatory changes is key to elucidating the mechanism by which CAM evolved from C3. Here, we use two closely related species in the Orchidaceae, Erycina pusilla (CAM) and Erycina crista-galli (C3), to conduct comparative transcriptomic analyses across multiple time points. Clustering of genes with expression variation across the diel cycle revealed some canonical CAM pathway genes similarly expressed in both species, regardless of photosynthetic pathway. However, gene network construction indicated that 149 gene families had significant differences in network connectivity and were further explored for these functional enrichments. Genes involved in light sensing and ABA signaling were some of the most differently connected genes between the C3 and CAM Erycina species, in agreement with the contrasting diel patterns of stomatal conductance in C3 and CAM plants. Our results suggest changes to transcriptional cascades are important for the transition from C3 to CAM photosynthesis in Erycina.

17.
Genome Biol ; 18(1): 65, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28457232

RESUMEN

BACKGROUND: The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. RESULTS: CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. CONCLUSIONS: The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Evolución Molecular , Proteínas de Plantas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Viridiplantae/clasificación , Viridiplantae/enzimología , Viridiplantae/genética
18.
J Hered ; 108(1): 69-77, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974487

RESUMEN

Plants have evolved a diverse array of strategies for sexual reproduction, particularly through the modification of male and female organs at distinct points in development. The immense variation in sexual systems across the land plants provides a unique opportunity to study the genetic, epigenetic, phylogenetic, and ecological underpinnings of sex determination. Here, we reflect on more than a century of research into flowering plant sex determination, placing a particular focus on the foundational genetic and cytogenetic observations, experiments, and hypotheses. Building on the seminal work on the genetics of plant sex, modern comparative genomic analyses now allow us to address longstanding questions about sex determination and the origins of sex chromosomes.


Asunto(s)
Flores/genética , Plantas/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Biodiversidad , Citogenética , Genoma de Planta , Genómica/métodos
19.
Am J Bot ; 103(10): 1717-1729, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27793858

RESUMEN

PREMISE OF THE STUDY: Yucca species are ideal candidates for the study of coevolution due to the obligate mutualism they form with yucca moth pollinators (genera Tegeticula and Parategeticula). Yuccas are not the only species to exhibit a mutualism with yucca moths; the genus Hesperoyucca is pollinated by the California yucca moth (Tegeticula maculata). Relationships among yuccas, Hesperoyucca, and other members of subfamily Agavoideae are necessary to understand the evolution of this unique pollination syndrome. Here, we investigate evolutionary relationships of yuccas and closely related genera looking at the timing and origin of yucca moth pollination. METHODS: In this study, we sequenced the chloroplast genomes of 20 species in the subfamily Agavoideae (Asparagaceae) and three confamilial outgroup taxa to resolve intergeneric phylogenetic relationships of Agavoideae. We estimated divergence times using protein-coding genes from 67 chloroplast genomes sampled across monocots to determine the timing of the yucca moth pollination origin. KEY RESULTS: We confidently resolved intergeneric relationships in Agavoideae, demonstrating the origin of the yucca-yucca moth mutualism on two distinct lineages that diverged 27 million years ago. Comparisons of Yucca and Hesperoyucca divergence time to those of yucca moths (Tegeticula and Parategeticula, Prodoxidae) indicate overlapping ages for the origin of pollinating behavior in the moths and pollination by yucca moths in the two plant lineages. CONCLUSION: Whereas pollinating yucca moths have been shown to have a single origin within the Prodoxidae, there were independent acquisitions of active pollination on lineages leading to Yucca and Hesperoyucca within the Agavoideae.


Asunto(s)
Asparagaceae/fisiología , Biodiversidad , Evolución Biológica , Genoma del Cloroplasto/genética , Mariposas Nocturnas/fisiología , Polinización , Simbiosis , Animales , Asparagaceae/genética , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Yucca/genética , Yucca/fisiología
20.
G3 (Bethesda) ; 6(9): 2679-85, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27342737

RESUMEN

Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.


Asunto(s)
Asparagus/genética , Evolución Molecular , Filogenia , Retroelementos/genética , Tamaño del Genoma , Genoma de Planta , Organismos Hermafroditas/genética , Poliploidía , Cromosomas Sexuales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...